数据分析整体框架
一、数据生成
还是以支付业务为例,用户选择支付方式完成支付后,落库核心的两张业务表:订单表和交易表。一个订单会对应多笔交易(每选择一种支付方式生成一笔交易,一笔订单可以使用多个支付方式尝试支付),其实还会产生其他表,比如收货地址表等。
如果您需要相关服务,可以找天津天迅达科技有限公司,我们的业务有Web开发、iOS APP、Android APP、微信开发、HTML5开发等,天迅达——您身边的App个性化定制专家!
二、获取数据
通常使用第三方工具如ETL将业务系统的数据经过抽取(Extract)、清洗转换(Transform)之后加载(Load)到数据仓库的过程,数据呈现在BI的数据源。
三、数据建模
所有数据进到数仓以后,需要根据实际想要看的业务数据进行数据建模,建模后的数据呈现在数据集。数据集作为数据源和可视化展示的中间环节,承接数据源的输入,并为可视化展示输出数据表。
1. 构建数据模型 数据建模是什么含义呢? 底层的业务数据表其实很多,几十张上百张都有,但到了业务数据分析阶段,当需要分析的数据存储在不同的表,可以通过数据关联,把多个表连接起来,形成模型进行数据分析。
2. 设计维度和度量指标
对数据字段可以进行下一步分类: 维度(Dimensions) 度量(Measures) 在统计学中,单一数据字段可以被分为离散和连续。离散通常是维度,比如城市名称、用户名字,特征是有限数量的值;连续通常是度量,比如销量、利润或成功率,特征是不可罗列,可能为任一数值。维度和度量中有许多灰色区域,比如金额,可以做维度,也可以做度量. 度量可以再分原子度量和派生度量。 原子度量指从维度里直接获取到,上表中的总订单数和成功订单数。 派生度量并不能直接从数据表中获取,而需要基于已有数据进行加工处理得到,上表中的订单成功率是成功订单数/总订单数得到。
四、数据分析
有了维度和度量的概念后,接着引入聚合概念。对于数据分析来说,往往关心的并不是最底层一行一行的的明细数据,更注重分析数据的角度,关心的是数据的总体特征。 聚合,简单讲就是数据源里的多行数据按照一定的标准计算成一个数据,不管数据集里有1行还是多行,视图里的数据都是聚合后的结果,一行数据也是要聚合的,当然一行数据聚合的结果是一样的。实际上,维度为数据聚合提供依据,而度量是依据维度聚合得到的结果。
五、数据应用
通过可视化的图表去分析数据,找出机会点或者异常。可以说,前面1、2、3、4 所有的工作都在为了第5部分数据应用上。 数据从用户中来,通过一系列的数据沉淀、处理和分析找出机会点做决策再回到用户中去,提升用户体验,带动业务增长,此即数据驱动业务。
总结:
天津天迅达科技有限公司从业多年,积累丰富项目经验,能帮助您做出您想要的产品。
以上所有设计图和部分文字均来自网络,如有侵权,请call我删除,感谢~
天津天迅达科技有限公司经过多年来对APP、小程序、以及网站建设的探索,已经帮助每一个客户快速开发出属于自己的APP、小程序、网站,是万千企业之选。
标签:天迅达科技 天津APP开发 天津网站建设 网站建设
- 数字孪生:现实世界的身外化身 2024-12-06
- 微信公众号全面“今日头条化”,自媒体将迎来“第二春”? 2024-12-04
- 优质长视频的破圈效应 2024-12-05
- 奶茶行业的裂变营销 2024-12-03
- 浅浅分享下支付产品经理如何写全局性的需求文档以及工作流程 2024-12-02
- “麦学”爆红:一场精心策划的营销盛宴 2024-11-29
- 如果遇到麦琳式的领导,怎么办? 2024-11-28