什么是机器学习,机器学习有什么作用

日期:2023-04-17  作者:小天  来源:www.txunda.com  人气:1855

一、机器学习的定义 

1.“训练”与“预测”是机器学习的两个过程,“模型”则是过程的中间输出结果,“训练”产生“模型”,“模型”指导 “预测”。 

2.机器学习方法是计算机利用已有的数据(经验),得出了某种模型(迟到的规律),并利用此模型预测未来(是否迟到)的一种方法。 

3.让我们把机器学习的过程与人类对历史经验归纳的过程做个比对。 

二、机器学习的范围: 

机器学习跟模式识别,统计学习,数据挖掘,计算机视觉,语音识别,自然语言处理等领域有着很深的联系。从范围上来说,机器学习跟模式识别,统计学习,数据挖掘是类似的,同时,机器学习与其他领域的处理技术的结合,形成了计算机视觉、语音识别、自然语言处理等交叉学科。因此,一般说数据挖掘时,可以等同于说机器学习。同时,我们平常所说的机器学习应用,应该是通用的,不仅仅局限在结构化数据,还有图像,音频等应用。 

模式识别=机器学习。两者的主要区别在于前者是从工业界发展起来的概念,后者则主要源自计算机学科。 

数据挖掘=机器学习+数据库。大部分数据挖掘中的算法是机器学习的算法在数据库中的优化。 

统计学习近似等于机器学习。机器学习中的大多数方法来自统计学;但是在某种程度上两者是有分别的,这个分别在于:统计学习者重点关注的是统计模型的发展与优化,偏数学,而机器学习者更关注的是能够解决问题,偏实践,因此机器学习研究者会重点研究学习算法在计算机上执行的效率与准确性的提升。 

计算机视觉=图像处理+机器学习。图像处理技术用于将图像处理为适合进入机器学习模型中的输入,机器学习则负责从图像中识别出相关的模式。 

语音识别=语音处理+机器学习。 

自然语言处理=文本处理+机器学习 

三、机器学习的子类-深度学习 虽然深度学习这四字听起来颇为高大上,但其理念却非常简单,就是传统的神经网络发展到了多隐藏层的情况。自从90年代以后,神经网络已经消寂了一段时间。但是BP算法的发明人Geoffrey Hinton一直没有放弃对神经网络的研究。由于神经网络在隐藏层扩大到两个以上,其训练速度就会非常慢,因此实用性一直低于支持向量机。2006年,Geoffrey Hinton在科学杂志《Science》上发表了一篇文章,论证了两个观点: 

1.多隐层的神经网络具有优异的特征学习能力,学习得到的特征对数据有更本质的刻画,从而有利于可视化或分类; 

2.深度神经网络在训练上的难度,可以通过“逐层初始化” 来有效克服。 

通过这样的发现,不仅解决了神经网络在计算上的难度,同时也说明了深层神经网络在学习上的优异性。从此,神经网络重新成为了机器学习界中的主流强大学习技术。同时,具有多个隐藏层的神经网络被称为深度神经网络,基于深度神经网络的学习研究称之为深度学习。 

3.机器学习的父类-人工智能 

人工智能是机器学习的父类。深度学习则是机器学习的子类。如果把三者的关系用图来表明的话,则是下图: 

总结起来,人工智能的发展经历了如下若干阶段,从早期的逻辑推理,到中期的专家系统,这些科研进步确实使我们离机器的智能有点接近了,但还有一大段距离。直到机器学习诞生以后,人工智能界感觉终于找对了方向。基于机器学习的图像识别和语音识别在某些垂直领域达到了跟人相媲美的程度。机器学习使 人类第一次如此接近人工智能的梦想。 

想想看我们一般形容谁有大智慧?圣人,诸如庄子,老子等。智慧是对生活的感悟,是对人生的积淀与思考,这与我们机器学习的思想何其相似?通过经验获取规律,指导人生与未来。没有经验就没有智慧。 

总结: 机器学习是目前业界最为Amazing与火热的一项技术,从网上的每一次淘宝的购买东西,到自动驾驶汽车技术,以及网络攻击抵御系统等等,都有机器学习的因子在内,同时机器学习也是最有可能使人类完成AI dream的一项技术,各种人工智能目前的应用,如微软小冰聊天机器人,到计算机视觉技术的进步,都有机器学习努力的成分。作为一名当代的计算机领域的开发或管理人员,以及身处这个世界,使用者IT技术带来便利的人们,最好都应该了解一些机器学习的相关知识与概念,因为这可以帮你更好的理解为你带来莫大便利技术的背后原理,以及让你更好的理解当代科技的进程,天津天迅达科技有限公司开发人员使用机器学习让开发效率大大的提高了。

以上所有设计图和部分文字均来自网络,如有侵权,请call我删除,感谢~

天津天迅达科技有限公司经过多年来对APP小程序、以及网站建设的探索,已经帮助每一个客户快速开发出属于自己的APP小程序网站,是万千企业之选。

标签:天迅达科技 天津APP开发 天津网站建设 网站建设